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Abstract. The resonance properties of localized electrostatic surface modes associated with a finite number
of ridges on an otherwise planar surface are investigated. Numerical solutions of the homogeneous integral
equations that describe the electromagnetic fields in the vicinity of the ridges are used to obtain the
dispersion relation of surface plasmons. The frequencies of the electrostatic surface shape resonances are
calculated for ridges with Gaussian, Lorentzian, sinusoidal, exponential, and triangular profiles. We show
the existence of splittings of the plasmon frequencies, which depends on the surface profile function and
on the distance between the ridges. Considering the ridge with a sinusoidal profile, we obtain the limit on
the number of ridges which generates a frequency splitting of the electrostatic surface shape resonances,
whose frequency values converge to those of the dispersion relation of surface plasmons on one-dimensional
sinusoidal grating.

PACS. 73.20.Mf Collective excitations (including plasmons and other charge-density excitations) –
78.66.Bz Metals and metallic alloys

1 Introduction

It is well known that Electrostatic and electromagnetic
surface shape resonances (ESSR), i.e., surface resonances
that owe their existence to the geometric shape of the sur-
face, has become an important research subject because
their excitation on the surface of a dielectric medium leads
to a strong enhancement of the electric field in the vicinity
of the surface. They are solutions of Laplace’s or Maxwell’s
equations, respectively, in the vicinity of a protuberance
or indentation on an otherwise planar surface of dielectric
medium embeded by vacuum. The increase of the Raman
scattering cross section of molecules adsorbed on solid sur-
faces [1] and the enhancement of the second harmonic gen-
eration in the reflection of light from a metalic interface [2]
are important physical processes closely related to ESSR.
More recently, Sánchez-Gil [3] has studied the coupling
of electromagnetic waves with metallic gratings of finite
length.

Theoretical calculations have shown that the frequen-
cies of ESSR modes are sensitive to the shape of the
surface protuberance or indentation. In particular, the
influence of single hemispherical [4], spherical [5], and
spheroidal [6] profiles on ESSR modes was studied. Mal-
shukov and Shekhmamet’ev [7] have calculated the first
pair of ESSR frequencies of a plane surface with a single
ridge defined by a Lorentzian profile function. Maradudin
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and Visscher [8] have considered protuberances with a
general profile by employing the Rayleigh hypothesis, the
Green’s theorem, and the extinction theorem to obtain
the homogenous integral equations satisfied by the Fourier
transform of the electrostatic potentials. Following refer-
ence [8], Maradudin [9] was able to generalize the results
of reference [7] for the one-dimensional Lorentzian profile,
and also calculated the ESSR associated to protuberances
of cylindrical symmetry about the normal of the surface.
For an even one-dimensional profile, Maradudin [9] showed
that the frequencies of the resonances were roughly sym-
metrically positioned around the frequency of surface plas-
mons on a plane surface, and suggested that a sinusoidal
grating could be thought of as the result of a superposition
of a periodic array of ridges on an otherwise planar sur-
face. This implies that the frequencies of the surface reso-
nances associated with each protuberance should broaden
into bands as a consequence of the alignment.

All the previous ESSR calculations were done assum-
ing the existence of only one protuberance or depression
on an otherwise plane surface. This assumption might be
valid for a corrugated surface if the ridges are not close
enough to each other since the resonant fields are localized
in the vicinity of each protuberance.

The aim of this work is to present ESSR calculations
for a surface having one or more ridges, characterized
by an even one-dimensional profile function. The results
have been obtained by using the method which was devel-
oped by Maradudin and Visscher [8] to calculate ESSR
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Fig. 1. Interface between vacuum and a half-space dielectric
with an isolated ridge described by a Gaussian (dotted-dashed
curve), Lorentzian (solid curve) and sinusoidal (dashed curve)
profile.

frequencies in an otherwise planar surface of a semi-
infinite medium with a real dielectric function of the free
electron type.

2 Model

The system considered here consists of a half-space dielec-
tric with vacuum above. The dielectric is characterized by
an isotropic, real, frequency-dependent dielectric function
ε(ω) in the region x3 < ζ(x‖), with x‖ = x1e1 + x2e2,
where e1 and e2 are unit vectors in the x and y direc-
tions, respectively. Figure 1 shows three different types of
interfaces between the vacuum and the dielectric with one
ridge, which will be discussed in this work. Since we do
not include retardation effects, the resonance frequencies
of the ESSR are determined by solving Laplace’s equa-
tion. The electrostatic potential solutions of the Laplace
equation outside the selvedge region [ζ(x‖)min < x3 <
ζ(x‖)max] can be written in the form of Fourier integrals
as:

φ>(ω,x) =
1

(2π)2

∫
a(ω,k) eik.x‖−|k|x3 d2k,

x3 > ζ(x‖)max, (1a)

φ<(ω,x) =
1

(2π)2

∫
b(ω,k) eik.x‖+|k|x3 d2k,

x3 < ζ(x‖)min, (1b)

where k = k1e1 +k2e2, x = x‖+x3e3, and a(ωk) [b(ω,k)]
is the Fourier coefficient of the electrostatic field in the
vacuum [dielectric] respectively.

Taking into account the Rayleigh hypothesis [8], i.e.
that the potentials given by equation (15) can be used
inside the selvedge region, we obtain the boundary condi-
tions given by

φ>(ω,x)|x3=ζ(x‖) = φ<(ω,x)|x3=ζ(x‖), (2a)

∂φ>(ω,x)

∂n
|x3=ζ(x‖) = ε(ω)

∂φ<(ω,x)

∂n
|x3=ζ(x‖). (2b)

By using the method of Maradudin and Visscher [8] for a
one-dimensional ridge described by an even profile func-
tion ζ(x1), it can be straightforwardly shown that the coef-
ficient a(ω, q) satisfies the homogeneous integral equation
[9]

λa(ω, q) =
1

π

∫ ∞
0

p a(ω, p)J(q − p|q + p) dp, (3)

with the kernel

J(q − p|q + p) =

∫ ∞
−∞

e(q−p)ζ(x1) − 1

q − p
e−i(q+p)x1 dx1,

(4a)

and

λ = ±
ε(ω) + 1

ε(ω)− 1
· (4b)

The solvability condition of equation (3) yields the ESSR
frequencies. Using a Gauss-Laguerre quadrature scheme
[11] ∫ ∞

0

dy e−y f(y) =
N∑
j=1

wj f(yj), (5)

where wj (yj) are the weights (abscissas), and N the num-
ber of abscissas, equation (3) can be converted into a ma-
trix eigenvalue equation

λa(ω, χi) =
N∑
j=1

Mij a(ω, χj), (6)

with

Mij = χj e
χj

4

R2
J(χi − χj |χi + χj)wj , (7)

and q = 2χi/R, p = 2χj/R, where R is the characteristic
width of the profile function.

2.1 Single ridges

In order to study the influence of the profiles on the ESSR
frequencies, we consider initially one isolated single ridge
described by five different profiles. The first surface profile
is defined by a Lorentzian function

ζ(x1) =
AR2/4

x2
1 +R2/4

, (8a)

where A represents the maximum height. In this case, the
kernel J(q− p|q+ p) of the homogeneous integral is given
by [9]

J(ξ − χ|ξ + χ) = π
R

4

2

e−2(ξ+χ)

×
∞∑
n=1

(
A

R

)n
(ξ − χ)

n!

n−1

2n
gn−1[2(ξ + χ)]

(n− 1)!
, (8b)
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where

gn+1(z) = (2n+ 1)gn(z) + z2gn−1(z) (9)

with g0(z) = 1, g1(z) = z + 1. The second profile is de-
scribed by a Gaussian function

ζ(x1) = Ae−4x2
1/R

2

, (10a)

and the corresponding kernel J(q − p|q + p) is given by

J(ξ − χ|ξ + χ) =
R

4

2√
π

∞∑
n=1

(
A

R

)n
×

(ξ − χ)

n!

n−1
2n
√
n

exp

[
−

(ξ + χ)2

4n

]
. (10b)

The third surface profile we consider is the following sinu-
soidal function

ζ(x1) =

 0 x1 < −L/2 ,
1
2 A [1 + cos(2π

L
x1)] −L/2 < x1 < +L/2

0 x1 > +L/2 ,
,

(11a)

withA and L being the height and the period, respectively.
In this case J(q − p|q + p) is given by

J(ξ − χ|ξ + χ) =
L2

4

∞∑
n=1

(A
L

)n (ξ − χ)

n!

n−1

×
2n∑
l=0

(−1)n+l+1
(2n
l

) sin(ξ + χ)

[π(n− l)− (ξ + χ)]
, (11b)

with ξ = Lq/2 and χ = Lp/2 in this case.
Although the Rayleigh hypothesis is valid only for ana-

lytic profiles [8,10], convergent results have been obtained
with nonanalytic profiles. We have considered single ridges
with profiles generated by functions whose first derivative
is discontinuous. The first of these profiles is described by
the following exponential function

ζ(x1) = Ae−2|x1|/R, (12a)

with the corresponding kernel given by

J(ξ − χ|ξ + χ) = R2
∞∑
n=1

(
A

R

)n
×

(ξ − χ)

n!

n−1 4

n

1

1 + (ξ + χ)/n2
, (12b)

with ξ = Rq and χ = Rp in this case. The second nonan-
alytic profile is generated by a triangular function defined
as

ζ(x1) =

 0, x1 < −R/2 ,
A(1− 2|x1|/R), −R/2 < x1 < +R/2

0, x1 > +R/2 ,
, (13a)

which gives

J(ξ − χ|ξ + χ) =
R

4

2 ∞∑
n=1

(A
R

)n (ξ − χ)

n!

n−1

× 2n+1
{ n∑
l=0

l!
(n
l

) ( 1

ξ + χ

)l+1

sin(
lπ

2
)

+ n!
( 1

ξ + χ

)n+1

sin(ξ + χ−
nπ

2
)
}
.

(13b)

2.2 Multiple ridges

To analyse the behaviour of the ESSR frequencies when
the surface of the dielectric has multiple ridges, we con-
sider m ridges with a sinusoidal profile separated by a
distance D. First, is considered a single sinusoidal ridge
ζ1(x1) defined in an interval −(L+D)/2 < x1 < (L+D)/2
as

ζ1(x1) =

 0 −(L+D)/2 < x1 < −L/2
1
2 A [1 + cos(2π

L x1)] −L/2 < x1 < L/2
0 L/2 < x1 < (L+D)/2

,

(14)

Consequently, the ensemble of m unidimensional sinu-
soidal ridges ζm(x1) is described by

ζm(x1)=
0, −m(L+D)/2 < x1∑m−1

k=0 ζ1[x1

+(m−2k−1)(1+D
L

)L
2

] , −m(L+D)/2 < x1 < m(L+D)/2

0, m(L+D)/2 < x1

,

(15a)

where each sinusoidal ridge is located at a distance D
apart from its neighbourhood. It can be shown that for
such a profile, the corresponding kernel can be written as

Jm(α|β) = Um−1{ cos [β
L

2
(1 +D/L) ] } J1(α|β), (15b)

where α = q − p, β = p + q, Um−1{ cos [β L2 (1 +D/L) ] }
is a second kind Chebyshev polynomial [11], and J1(α|β)
is given by equation (11b).

3 Numerical results

To obtain the ESSR frequencies for all the different pro-
files, one has to calculate the eigenvalues of equation (6).
The degree of convergence depends on the surface profile,
and also on the distance between the ridges in the case of
multiple ridges. These calculations have been performed
for a medium with free-electron-like dielectric function
ε(ω) = 1 − ω2

p/ω
2 where ωp is the plasma frequency. As

the first step, we calculated the ESSR associated with an
isolated ridge. In solving the matrix equation, equation
(6), it was found that the dimension N of the matrix Mij ,
equation (7), which corresponds to the number of points
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Fig. 2. The largest values of the resonance frequencies (1 and
2) of an isolated ridge as a function of the ratio A/R for a
Gaussian (dotted-dashed curve), Lorentzian (solid curve) and
sinusoidal (dashed curve) profile.

used in the Gauss-Laguerre quadrature, depends on the
surface profile through the ratio A/R (or A/L for the si-
nusoidal profile function), and on the number of terms nj
used in the summations of equations (8b, 10b, 11b, 12b,
13b, 15b) for each profile function. The Rayleigh hypoth-
esis restricts the accuracy of the results to low values of
A/R or A/L. In order to compare the resonance frequen-
cies with the same ratio A/R for the first two profiles and
A/L for the sinusoidal case, we consider the expansion of
equations (8a, 10a, 11a) up to the second order, and take
R = 2L/π for the sinusoidal case. For the sinusoidal pro-
file, we were able to achieve convergence for ratios A/L
up to 0.15, which is of the same order as results obtained
in previous calculations of the dispersion curves of surface
waves propagating across sinusoidal gratings [9,12]. Due
to the fact that there are two resonances for each value
of λ, equation (4b), the method enables us to calculate a
maximum of 2N frequencies.

Figure 2 shows the ESSR frequencies associated with
the two largest values of |λ| (1 and 2) for the Gaussian
(dot-dashed curve), Lorentzian (solid curve) and sinu-
soidal (dashed curve) profiles as a function of the ratio
A/R. A three figure accuracy was obtained for these reso-
nance frequencies with N = 5 and nj = 2, for ratios A/R
or A/L up to 0.15. As can be seen, the frequencies are
distributed roughly symmetrically with respect to ωp/

√
2.

Considering the same ratio of A/R, the splitting depends
strongly on the profile function, and the sinusoidal pro-
file presents a larger splitting than the others. This is also
observed for the second pair of resonance frequencies.

In Figure 3, we present the frequencies of the ESSR
associated with the two largest values of |λ| (1 and 2)
for the exponential (solid curve) and triangular (dashed
curve) profiles as a function to the ratio A/R. These pro-
files present a discontinuity in their first derivatives. The
ESSR frequencies calculated with the triangular profile
present a larger splitting than those calculated with the
exponential profile. Despite the fact that these two pro-
files are described by nonanalytic functions, we were able
to observe convergent solutions of equation (6) with three
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Fig. 3. The largest values of resonance frequencies (1 and
2) of an isolated ridge as a function of the ratio A/R for an
exponential (solid curve) and triangular (dashed curve) profile.
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Fig. 4. The largest values of the resonance frequencies (dotted
curve) for two ridges with a sinusoidal profile as a function of
D/L, with A/L = 0.05. The solid curves represent the largest
resonance frequencies of one single ridge.

figure accuracy for values of A/R up to 0.07 and a 10 (15)
quadrature for the exponential (triangular) profile. These
limits are lower than those obtained with profiles whose
first derivative is continuous, which is consistent with pre-
vious results obtained with the Rayleigh hypothesis for a
grating surface [13].

In order to analyse the localization of the ESSR, we
present in Figure 4 the largest resonance frequencies (dot-
ted curve) for two ridges with a sinusoidal profile and
A/L = 0.05, as a function of D/L. It is clear that these
frequencies converge to the values obtained for a single
ridge (solid curve) in a distance D ≈ L, which implies
that for this ratio of A/L, the ESSR are localized at this
distance D ≈ L, and consequently for distances larger
than L the two ridges can be treated as isolated. Since
the splitting between the frequencies increases with the
ratio A/L, for larger values of this ratio, the distance on
which two ridges can be treated as independent also in-
creases. In order to observe the effects of multiple ridges,
we consider D = 0 in equation (15a), and in Figure 5 we
present the resonance frequencies for a sinusoidal profile
with multiple ridges, m = 1, 2, 3, as a function of the ratio
A/L. One can see that the number of branches increases
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Fig. 5. Frequencies of the ESSR as functions of A/L for a
sinusoidal profile with D = 0: (a) m = 1; (b) m = 2; and (c)
m = 3.
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Fig. 6. Behaviour of the first pairs of resonance frequencies
∆ω as a function of the number m of ridges when the dielectric
medium is aluminum.

with m. Due to this fact, considering the same ratio A/L,
the dimension of Mij , equation (7), also increases with
m in order to achieve good numerical accuracy. Particu-
larly, for A/L = 0.14 we obtain three figure accuracy with
m = 1, 2, 3, using nj = 2, 10, 25, and matrices with dimen-
sions N = 5, 15 and 20, respectively. The number of terms
nj must increase with N , which is due to the fact that the
abscissae χi,j in equation (7) increase for larger values of
N .

Considering aluminum as the surface active medium
with a multiple sinusoidal profile, with D = 0 and A/L =
0.14, we show in Figure 6 the first pairs of resonance fre-
quencies, ∆ω = ω − ωp/

√
2 (ωp = 3.699× 1015 s−1), as a

function of the number of ridges. As can be seen, when
m increases the resonance frequencies present a larger
number of branches. Also, the largest value of the split-

ting tends to the maximum value obtained by Glass and
Maradudin [13], with the same ratio A/L, which indicates
that for larger values of m one can assume the resonance
frequencies to be those obtained for an infinite grating. In
the case of m = 5, the results were obtained with three
figure accuracy by using N = 50 and nj = 80.

4 Conclusions

In conclusion, we have obtained the ESSR frequencies for
one-dimensional ridges described by different profile func-
tions. The splitting of the resonance frequencies depends
strongly on the profile function. It has been shown that
these ESSR modes are localized near the ridges, such that
two ridges behave as isolated ones for relatively short dis-
tances. In grating surfaces, one of the previous works [13]
has mentioned that it was difficult to observe experimen-
tally the splitting of frequencies close to the frequency
of the surface plasmons on a plane surface (ωp/

√
2). In

the present case, the splitting on these frequencies de-
pends strongly on the profile function, e.g., the second pair
of frequencies can be located far apart from the plasma
frequency, allowing an easier experimental measurement.
The number of branches increases with the number of
ridges and, for a sinusoidal profile taking m = 5 , the
largest frequencies converge to those values obtained for
a grating surface at the edge of the Brillouin zone . This
indicates that the properties of a one-dimensional grating
can be achieved with a relatively small number of ridges.
The ESSR in other systems such as a film show a signi-
ficative difference and are now under investigation.

This work was supported by the Brazilian National Research
Council (CNPq).
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